ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Y. Oyama, C. Konno, Y. Ikeda, H. Maekawa, K. Kosako, T. Nakamura, A. Kumar, M. Youssef, M. Abdou, E. Bennett
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1879-1884
Neutronic | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29617
Articles are hosted by Taylor and Francis Online.
Neutronics experiments for an annular blanket system have been performed using a simulated line DT neutron source. The line source was simulated by moving point source in which the annular blanket was oscillated relatively on the axis of the DT neutron target. The measurements were performed in both ways of continuous and stepwise motions. The former was applied to heavy irradiation experiments such as the foil activation method for reaction rate and Li2O pellet technique for tritium production rate (TPR). The latter was to on-line methods such as NE213 and Li-glass scintillators for spectrum and TPR of 6Li and 7Li. Especially the latter case provides contribution of neutrons generated at each point on the line source to the reaction at the detector position. This corresponds to an importance distribution at the center axis of the annular system and can be compared to the calculated adjoint flux at the source positions.