ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
R.D. Watson, F.M. Hosking, M.F. Smith, C.D. Croessmann
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1794-1798
Impurity Control and Plasma-Facing Component | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29603
Articles are hosted by Taylor and Francis Online.
The monoblock geometry is proposed for the ITER Physics Phase divertor for brazing of carbon armor tiles to copper or molybdenum cooling tubes. Elastic/plastic finite element analyses predicted high residual stresses except with OFHC copper. Samples of pyrolytic graphite tiles brazed to OFHC copper, Glidcop™ Al-15 copper alloy, and molybdenum tubing show cracking in all of the samples, except with the OFHC copper. A 3-tile divertor target consisting of 12 mm thick pyrolytic graphite brazed with a copper-silver alloy to a 12 mm diameter OFHC copper tubing was tested at 15 MW/m2 with a rastered 30 keV electron beam for 1000 thermal cycles. A gradual rise in surface temperature from 1000 C to 1200 C over the 1000 cycles was observed, along with hot stripes (1500 C) at the tile edges. However, no delamination cracks could be detected.