ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
R.D. Watson, F.M. Hosking, M.F. Smith, C.D. Croessmann
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1794-1798
Impurity Control and Plasma-Facing Component | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29603
Articles are hosted by Taylor and Francis Online.
The monoblock geometry is proposed for the ITER Physics Phase divertor for brazing of carbon armor tiles to copper or molybdenum cooling tubes. Elastic/plastic finite element analyses predicted high residual stresses except with OFHC copper. Samples of pyrolytic graphite tiles brazed to OFHC copper, Glidcop™ Al-15 copper alloy, and molybdenum tubing show cracking in all of the samples, except with the OFHC copper. A 3-tile divertor target consisting of 12 mm thick pyrolytic graphite brazed with a copper-silver alloy to a 12 mm diameter OFHC copper tubing was tested at 15 MW/m2 with a rastered 30 keV electron beam for 1000 thermal cycles. A gradual rise in surface temperature from 1000 C to 1200 C over the 1000 cycles was observed, along with hot stripes (1500 C) at the tile edges. However, no delamination cracks could be detected.