ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Recent surveys confirm high levels of U.S. nuclear support
Surveys have consistently indicated that public support in the United States for the use of nuclear energy has been increasing in recent years. Four recent surveys continue to suggest that near-record-high numbers of Americans support nuclear energy. However, the survey results differ—sometimes widely—in the details of their findings.
Neil B. Morley, Mark S. Tillack, Mohamed A. Abdou
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1765-1771
Impurity Control and Plasma-Facing Component | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29598
Articles are hosted by Taylor and Francis Online.
In an effort to prolong the lifetime of impurity control components, the idea of protecting the contact surface from erosion and radiation damage with a thin film of liquid metal has been advanced. This flowing, liquid metal film could also be used to remove the high heat fluxes incident on limiter or divertor surfaces, thus eliminating problems with thermal stresses in the components as well. In order to determine the attractiveness and feasibility of such a concept, the heat transfer characteristics of a thin film of liquid metal are examined when the film is exposed to a large, one-sided heat flux incident on the free surface. The method developed yields the temperature at any location in the film and is used to determine, for a given design and space-dependant heat flux, the film velocity required to keep the maximum film temperature below whatever Tmax limit is imposed. In addition, the behavior of the film flow at the required velocity is examined in order to determine if such a flow is possible. This analysis is accomplished by using a one-dimensional model of the film height, developed from the basic set of MHD equations, to show the design conditions that allow for a stable film. The analytical method is applied to ITER-type limiter and divertor configurations, resulting in required film velocities (v < 5 m/s for the cases examined) and allowable values of the design parameters (channel size, wall conductivity, and substrate angle) that yield a stable film, capable of removing all incident heat.