ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
DOE-NE’s newest fuel consortium includes defense from antitrust laws
The Department of Energy's Office of Nuclear Energy is setting up a nuclear fuel Defense Production Act Consortium that will seek voluntary agreements with interested companies “to increase fuel availability, provide more access to reliable power, and end America’s reliance on foreign sources of enriched uranium and critical materials needed to power the nation’s nuclear renaissance.” According to an August 22 DOE press release, the plan invokes the Defense Production Act (DPA) to give consortium members “defense from antitrust laws when certain criteria are met” and “allow industry consultation to develop plans of action.” DOE-NE is looking for interested companies to join the consortium ahead of its first meeting, scheduled for October 14.
J. Q. Ling R. Carrera
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1755-1760
Impurity Control and Plasma-Facing Component | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29596
Articles are hosted by Taylor and Francis Online.
In this paper, the kinematic synthesis for the proposed in-vessel remote maintenance system (IVRMS) in the fusion experiment (IGNITEX) is presented based on a convenient coordinate system. The inverse kinematic problem is solved by using a fast, efficient algorithm. The algorithm is especially suitable for the elongated tokamak vacuum vessel geometry required for a fusion ignition experiment. The results of numerical and graphical simulation are presented. Also, a computer animation of this motion has been done. The ideal trajectories are approximated by a set of piece-wise linear functions. The performance of the motion planning is evaluated. The problem of control of the manipulator to accomplish the required maintenance tasks are discussed. The errors caused by the motion planning and the joint mechanisms are analyzed. The preliminary study of the dynamics underlying the design is presented. The analysis in this paper provides an analytical basis for improvement of the design of the IVRMS's manipulator.