ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
J. Q. Ling R. Carrera
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1755-1760
Impurity Control and Plasma-Facing Component | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29596
Articles are hosted by Taylor and Francis Online.
In this paper, the kinematic synthesis for the proposed in-vessel remote maintenance system (IVRMS) in the fusion experiment (IGNITEX) is presented based on a convenient coordinate system. The inverse kinematic problem is solved by using a fast, efficient algorithm. The algorithm is especially suitable for the elongated tokamak vacuum vessel geometry required for a fusion ignition experiment. The results of numerical and graphical simulation are presented. Also, a computer animation of this motion has been done. The ideal trajectories are approximated by a set of piece-wise linear functions. The performance of the motion planning is evaluated. The problem of control of the manipulator to accomplish the required maintenance tasks are discussed. The errors caused by the motion planning and the joint mechanisms are analyzed. The preliminary study of the dynamics underlying the design is presented. The analysis in this paper provides an analytical basis for improvement of the design of the IVRMS's manipulator.