ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
U.K. consents to Hinkley Point B decommissioning
The U.K. government’s Office for Nuclear Regulation has granted EDF Energy formal consent to decommission the Hinkley Point B nuclear power plant in Somerset, England. The two-unit advanced gas-cooled reactor was permanently shut down in August 2022, and site owner EDF applied to ONR for decommissioning consent in August 2024.
C. A. Ordonez, R. Carrera, W. D. Booth, M. E. Oakes
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1750-1754
Impurity Control and Plasma-Facing Component | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29595
Articles are hosted by Taylor and Francis Online.
A Monte Carlo program for simulating plasma ions incident on a surface with a floating potential is presented. This program is used for calculating sputtering, backscattering, and implantation values for deuterium plasma ions incident on a carbon surface. Sputtering, backscattering, and implantation by accelerated Maxwellian, monoenergetic, and Maxwellian ions are compared at the same average incident energy. Values for accelerated Maxwellian ions are found to be significantly different from values for monoenergetic and Maxwellian ions.