ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
DOE-NE’s newest fuel consortium includes defense from antitrust laws
The Department of Energy's Office of Nuclear Energy is setting up a nuclear fuel Defense Production Act Consortium that will seek voluntary agreements with interested companies “to increase fuel availability, provide more access to reliable power, and end America’s reliance on foreign sources of enriched uranium and critical materials needed to power the nation’s nuclear renaissance.” According to an August 22 DOE press release, the plan invokes the Defense Production Act (DPA) to give consortium members “defense from antitrust laws when certain criteria are met” and “allow industry consultation to develop plans of action.” DOE-NE is looking for interested companies to join the consortium ahead of its first meeting, scheduled for October 14.
M. R. Fox, A. B. Hull, T. F. Kassner
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1619-1628
Material and Tritium | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29573
Articles are hosted by Taylor and Francis Online.
Susceptibility of Types 316NG, 316, and 304 stainless steels (SS) to stress corrosion cracking was investigated in slow-strain-rate tests (SSRTs) in oxygenated water that simulates important parameters anticipated in first-wall/blanket systems. The water chemistry was based on a computer code that yielded the nominal concentrations of radiolytic species produced in an aqueous environment under conditions expected in the International Thermonuclear Experimental Reactor (ITER). Actual SSRTs were performed in a less benign, more oxidizing reference environment at temperatures of 52 to 150°C. Predominantly ductile fracture was observed in Type 316NG and nonsensitized Types 316 and 304 SS SSRT specimens that were strained to failure in a reference ITER water chemistry. The failure behavior of Type 304 SS specimens, heat-treated to yield sensitization values of 2, 3, and 20 Coulomb (C)/cm2 by the electrochemical potentiokinetic reactivation technique, demonstrated that the degree of sensitization dramatically affected susceptibility to intergranular stress corrosion cracking. Ranking for resistance to stress corrosion cracking in simulated ITER water by electron microscopy and SSRT parameters, i.e., failure time, ultimate strength, total elongation, and stress ratio, is 304 SS (EPR = 20<2 C/cm2)<316NG SS.