ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
M. R. Fox, A. B. Hull, T. F. Kassner
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1619-1628
Material and Tritium | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29573
Articles are hosted by Taylor and Francis Online.
Susceptibility of Types 316NG, 316, and 304 stainless steels (SS) to stress corrosion cracking was investigated in slow-strain-rate tests (SSRTs) in oxygenated water that simulates important parameters anticipated in first-wall/blanket systems. The water chemistry was based on a computer code that yielded the nominal concentrations of radiolytic species produced in an aqueous environment under conditions expected in the International Thermonuclear Experimental Reactor (ITER). Actual SSRTs were performed in a less benign, more oxidizing reference environment at temperatures of 52 to 150°C. Predominantly ductile fracture was observed in Type 316NG and nonsensitized Types 316 and 304 SS SSRT specimens that were strained to failure in a reference ITER water chemistry. The failure behavior of Type 304 SS specimens, heat-treated to yield sensitization values of 2, 3, and 20 Coulomb (C)/cm2 by the electrochemical potentiokinetic reactivation technique, demonstrated that the degree of sensitization dramatically affected susceptibility to intergranular stress corrosion cracking. Ranking for resistance to stress corrosion cracking in simulated ITER water by electron microscopy and SSRT parameters, i.e., failure time, ultimate strength, total elongation, and stress ratio, is 304 SS (EPR = 20<2 C/cm2)<316NG SS.