ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
B. A. Loomis, D. L. Smith
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1580-1584
Material and Tritium | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29566
Articles are hosted by Taylor and Francis Online.
Swelling of vanadium alloys was determined after irradiation at 420 and 600°C to neutron fluences ranging from 0.3 × 1027 neutrons/m2 (17 dpa) to 1.9 × 1027 neutrons/m2 (114 dpa). Binary and ternary vanadium alloys with Cr, Ti, Mo, W, Ni, Fe, Zr, and Si additions were irradiated in either the fully annealed, partially annealed, or 10% cold-worked condition. Upon irradiation at 600°C, the swelling of vanadium to which Cr had been added was greatly exacerbated, whereas the swelling of vanadium to which Ti, Mo, W, and Ni (3–20%) had been added was not significantly affected. The swelling of V-Cr alloys upon irradiation at 600°C was substantially reduced (<0.1%/dpa) by the addition of Ti (1–15%). Upon irradiation at 420°C the swelling of the vanadium alloys was <0.2%/dpa. Partial annealing or 10% cold-working had an insignificant effect on swelling of the alloys.