ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
B. A. Loomis, D. L. Smith
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1580-1584
Material and Tritium | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29566
Articles are hosted by Taylor and Francis Online.
Swelling of vanadium alloys was determined after irradiation at 420 and 600°C to neutron fluences ranging from 0.3 × 1027 neutrons/m2 (17 dpa) to 1.9 × 1027 neutrons/m2 (114 dpa). Binary and ternary vanadium alloys with Cr, Ti, Mo, W, Ni, Fe, Zr, and Si additions were irradiated in either the fully annealed, partially annealed, or 10% cold-worked condition. Upon irradiation at 600°C, the swelling of vanadium to which Cr had been added was greatly exacerbated, whereas the swelling of vanadium to which Ti, Mo, W, and Ni (3–20%) had been added was not significantly affected. The swelling of V-Cr alloys upon irradiation at 600°C was substantially reduced (<0.1%/dpa) by the addition of Ti (1–15%). Upon irradiation at 420°C the swelling of the vanadium alloys was <0.2%/dpa. Partial annealing or 10% cold-working had an insignificant effect on swelling of the alloys.