ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
N. A. Uckan, D. E. Post
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1411-1417
ITER | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29540
Articles are hosted by Taylor and Francis Online.
The physics basis of ITER has been developed from an assessment of the present knowledge of tokamak physics with allowance for improvements in that knowledge during the design and construction phases of ITER. The assessment has been carried out by the ITER design team in collaboration with the international fusion program, including participation by the experimental teams of all of the major toroidal experiments. The physics basis consists of guidelines for energy confinement, operational limits, power and particle control, disruptions, current drive and heating, alpha particle physics, and plasma control. The ITER physics group has worked with the engineering design groups to implement these guidelines. In addition, a preliminary design for the plasma diagnostics for ITER has been developed, and an operational program has been planned. In many cases, the physics issues have not been fully resolved, and a physics R&D program has been developed to complete the physics basis for ITER.