ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep geologic repository progress—2025 Update
Editor's note: This article has was originally published in November 2023. It has been updated with new information as of June 2025.
Outside my office, there is a display case filled with rock samples from all over the world. It contains a disk of translucent, orange salt from the Waste Isolation Pilot Plant near Carlsbad, N.M.; a core of white-and-bronze gneiss from the site of the future deep geologic repository in Eurajoki, Finland; several angular chunks of fine-grained, gray claystone from the underground research laboratory at Bure, France; and a piece of coarse-grained granite from the underground research tunnel in Daejeon, South Korea.
N. A. Uckan, D. E. Post
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1411-1417
ITER | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29540
Articles are hosted by Taylor and Francis Online.
The physics basis of ITER has been developed from an assessment of the present knowledge of tokamak physics with allowance for improvements in that knowledge during the design and construction phases of ITER. The assessment has been carried out by the ITER design team in collaboration with the international fusion program, including participation by the experimental teams of all of the major toroidal experiments. The physics basis consists of guidelines for energy confinement, operational limits, power and particle control, disruptions, current drive and heating, alpha particle physics, and plasma control. The ITER physics group has worked with the engineering design groups to implement these guidelines. In addition, a preliminary design for the plasma diagnostics for ITER has been developed, and an operational program has been planned. In many cases, the physics issues have not been fully resolved, and a physics R&D program has been developed to complete the physics basis for ITER.