ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
N. A. Uckan, D. E. Post
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1411-1417
ITER | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29540
Articles are hosted by Taylor and Francis Online.
The physics basis of ITER has been developed from an assessment of the present knowledge of tokamak physics with allowance for improvements in that knowledge during the design and construction phases of ITER. The assessment has been carried out by the ITER design team in collaboration with the international fusion program, including participation by the experimental teams of all of the major toroidal experiments. The physics basis consists of guidelines for energy confinement, operational limits, power and particle control, disruptions, current drive and heating, alpha particle physics, and plasma control. The ITER physics group has worked with the engineering design groups to implement these guidelines. In addition, a preliminary design for the plasma diagnostics for ITER has been developed, and an operational program has been planned. In many cases, the physics issues have not been fully resolved, and a physics R&D program has been developed to complete the physics basis for ITER.