ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
DOE-NE’s newest fuel consortium includes defense from antitrust laws
The Department of Energy's Office of Nuclear Energy is setting up a nuclear fuel Defense Production Act Consortium that will seek voluntary agreements with interested companies “to increase fuel availability, provide more access to reliable power, and end America’s reliance on foreign sources of enriched uranium and critical materials needed to power the nation’s nuclear renaissance.” According to an August 22 DOE press release, the plan invokes the Defense Production Act (DPA) to give consortium members “defense from antitrust laws when certain criteria are met” and “allow industry consultation to develop plans of action.” DOE-NE is looking for interested companies to join the consortium ahead of its first meeting, scheduled for October 14.
H. Attaya
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1331-1336
Result of Large Experiment and Plasma Engineering | doi.org/10.13182/FST91-A29527
Articles are hosted by Taylor and Francis Online.
Manganese-stabilized steels have been proposed as candidate structural materials for fusion reactors, because they have been perceived as “low-activation” materials. Depending on the neutron spectra and the neutron fluence, the decay heat in Mn-stabilized steels is about 3–7 times larger than that in the Ni-stabilized steels. This large amount of decay heat could have serious impact in the case of the loss of coolant accident (LOCA). A two-dimensional LOCA model has been used to examine the LOCA temperature response of the manganese steel when utilized in an earlier U.S. design of ITER. The results show that the Mn-steel has approached its melting temperature by less than 100°C after about 7 hours from the onset of LOCA. On the other hand, the results for the nickel stabilized steel alloy 316SS show that the maximum temperature reached is 532°C in about the same time.