ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
P.G. Papanikolaou, C.K. Choi
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1317-1321
Result of Large Experiment and Plasma Engineering | doi.org/10.13182/FST91-A29524
Articles are hosted by Taylor and Francis Online.
The potential for the field-reversed configuration (FRC) as a fusion reactor concept, in particular as a candidate for an alternate concept device, depends on its confinement characteristics. The advantages of an FRC plasma are that it is easily produced and has low impurity concentrations. Currently, the electron and heat loss rates are higher than those predicted by Coulomb collisions. Analyses using the local approximation predict that LHD waves should exist near the separatrix, but experiments have failed to detect them. This local approximation may not be valid in two regions: near the field null, where ion orbits may be large and near the separatrix, where the equilibrium magnetic field and the plasma density can change appreciably. In this papaer we develop a method to analyze the stability of a 1-D FRC that takes the sharp gradients near the separatrix and the effect of the field null into account. This finite element code seeks a solution to the linearized Maxwell-Vlasov equations in the form of eigenvalues to a dispersion matrix. The dispersion matrix contains all the information pertaining to the stability of the plasma.