ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
K. A. Werley, C. G. Bathke, R. A. Krakowski, R. L. Miller, J. N. DiMarco
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1266-1271
Result of Large Experiment and Plasma Engineering | doi.org/10.13182/FST91-A29515
Articles are hosted by Taylor and Francis Online.
Essential to the achievement of economically compact fusion power cores is the radiation of a large fraction of the plasma heating power uniformly to the first wall, thereby assuring adequate longevity of the divertor impurity control system. The radiation of significant fractions of the heating power from the beta-limited core-plasma region in an RFP, however, requires a corresponding increase in the quality of (non-radiative) confinement. It is shown that radiating ≳ 70% of the total heating power from the core plasma of the TITAN compact reversed-field-pinch (RFP) reactor is possible with non-radiative confinement times that are a large factor (> 15) below classical confinement predictions and are within the present scaling relation based upon extrapolations of the existing RFP transport database. By comparison, the confinement in the ARIES-I tokamak reactor is within a factor of 2 of neo-classical predictions.