ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Jun Feng, Frank A. McClintock, Rui Vieira, Regis M. Pelloux, Richard J. Thome
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1177-1182
Ignition Device | doi.org/10.13182/FST91-A29502
Articles are hosted by Taylor and Francis Online.
The conductor for the central solenoid of the Compact Ignition Tokamak (CIT) operates with a multiaxial stress condition in which the ratios of the principal stresses are not proportional during the operating cycle. The stresses arise from both the self-electromagnetic loads and interactions with the toroidal field coils. The latter primarily provide a radial compressive load which varies during a pulse. This paper presents the status of conductor evaluation and design criteria development. Analysis of the stress conditions during a pulse indicates that the bulk of the fatigue life damage is done during one portion of the total current scenario. This is based on the postulate that the multiaxial stress and lifetime condition can be characterized approximately by examining the worst combination of shear stress range with tensile stress normal to the shear plane at reversal. The latter is found by tracing the history of the principal shear stresses and their associated normal stresses for all three principal shear planes at the worst point in the coil. The analysis thus provides the operating conditions to be simulated in uniaxial and multiaxial tests from which lifetime correlations can be found for the conductor. Evaluation of existing multiaxial fatigue life data on Alloy 718 has led to a postulate for a criterion to be applied to the conductor. Uniaxial and biaxial data are being taken on candidate conductors to verify the postulated lifetime correlations. The primary candidates for the conductor are C15715 (an alumina-dispersion-strengthened copper) and a CuCrZr alloy. The conductor will be required in plate form, nominally 1-inch thick and 70-inches square. Tests have thus far only been conducted on specimens from subscale plates. The status of the test program and of the full-scale plate development program are given.