ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Marta Velarde, Jose Manuel Perlado
Fusion Science and Technology | Volume 43 | Number 3 | May 2003 | Pages 484-491
Technical Paper | Safety and Environment | doi.org/10.13182/FST03-A295
Articles are hosted by Taylor and Francis Online.
The evaluation of the radiological environmental impact of tritium emission to the atmosphere from inertial fusion energy (IFE) reactors has different chronological phases. In the release primary phase, the important factors are the boundary conditions: atmospheric and geometric grid from the point of emission. The second phase occurs when the tritium is deposited in the ground. This phase is important in order to account for the dosimetric effects of tritium, and it is a key factor in the chronic and collective doses of the population.The final internal irradiation dose is calculated as the addition of doses by ingestion, by inhalation of the primary plume, by absorption on the skin, and inhalation by reemission to the atmosphere.Each of the two chemical forms (HT and HTO) of tritium present in the environment from potential IFE reactor releases contributes in different ways to the most exposed individual and the committed effective dose equivalent (50-CEDE). The HTO presents a much larger percentage of the internal irradiation from inhalation and absorption through the skin than HT. However, in releases where HT represents 100%, the contributions to the total effective dose by ingestion and reemission are important.