ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
DOE fast tracks test reactor projects: What to know
The Department of Energy today named 10 companies that want to get a test reactor critical within the next year using the DOE’s offer to authorize test reactors outside of national laboratories. As first outlined in one of the four executive orders on nuclear energy released by President Trump on May 23 and in the request for applications for the Reactor Pilot Program released June 18, the companies must use their own money and sites—and DOE authorization—to get reactors operating. What they won’t need is a Nuclear Regulatory Commission license.
Marta Velarde, Jose Manuel Perlado
Fusion Science and Technology | Volume 43 | Number 3 | May 2003 | Pages 484-491
Technical Paper | Safety and Environment | doi.org/10.13182/FST03-A295
Articles are hosted by Taylor and Francis Online.
The evaluation of the radiological environmental impact of tritium emission to the atmosphere from inertial fusion energy (IFE) reactors has different chronological phases. In the release primary phase, the important factors are the boundary conditions: atmospheric and geometric grid from the point of emission. The second phase occurs when the tritium is deposited in the ground. This phase is important in order to account for the dosimetric effects of tritium, and it is a key factor in the chronic and collective doses of the population.The final internal irradiation dose is calculated as the addition of doses by ingestion, by inhalation of the primary plume, by absorption on the skin, and inhalation by reemission to the atmosphere.Each of the two chemical forms (HT and HTO) of tritium present in the environment from potential IFE reactor releases contributes in different ways to the most exposed individual and the committed effective dose equivalent (50-CEDE). The HTO presents a much larger percentage of the internal irradiation from inhalation and absorption through the skin than HT. However, in releases where HT represents 100%, the contributions to the total effective dose by ingestion and reemission are important.