ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep geologic repository progress—2025 Update
Editor's note: This article has was originally published in November 2023. It has been updated with new information as of June 2025.
Outside my office, there is a display case filled with rock samples from all over the world. It contains a disk of translucent, orange salt from the Waste Isolation Pilot Plant near Carlsbad, N.M.; a core of white-and-bronze gneiss from the site of the future deep geologic repository in Eurajoki, Finland; several angular chunks of fine-grained, gray claystone from the underground research laboratory at Bure, France; and a piece of coarse-grained granite from the underground research tunnel in Daejeon, South Korea.
D. A. Bowers, J. R. Haines, M. D. McSmith, V. D. Lee
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1138-1142
Ignition Device | doi.org/10.13182/FST91-A29496
Articles are hosted by Taylor and Francis Online.
The Compact Ignition Tokamak (CIT) project, led by the Princeton Plasma Physics Laboratory, will employ a double null poloidal divertor as its primary means of energy and particle removal from the plasma. The fusion power handling capability of the divertor may represent the most severe constraint on the operating envelope for CIT. In addition to identifying this envelope based on divertor thermal performance, several studies aimed at improving this performance were examined. The reference divertor design concept employs small modules with pyrolytic graphite (PG) tiles. Studies of the sensitivity of the thermal performance of the passively cooled PG divertor design to separatrix sweeping parameters showed that a single pass sweep is near optimal for CIT conditions. An examination of the thermal performance of alternate materials found that some improvement (up to 20%) in the power handling capability of the divertor may be possible by using higher conductivity forms of PG, although the mechanical properties of these materials are not currently available. Alternate power handling approaches were examined and shown to have no significant improvement in thermal performance over the baseline passively cooled approach.