ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
DOE-NE’s newest fuel consortium includes defense from antitrust laws
The Department of Energy's Office of Nuclear Energy is setting up a nuclear fuel Defense Production Act Consortium that will seek voluntary agreements with interested companies “to increase fuel availability, provide more access to reliable power, and end America’s reliance on foreign sources of enriched uranium and critical materials needed to power the nation’s nuclear renaissance.” According to an August 22 DOE press release, the plan invokes the Defense Production Act (DPA) to give consortium members “defense from antitrust laws when certain criteria are met” and “allow industry consultation to develop plans of action.” DOE-NE is looking for interested companies to join the consortium ahead of its first meeting, scheduled for October 14.
K. T. Hsieh, W.F. Weldon, M.D. Werst, E. Montalvo, R. Carrera
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1089-1094
Ignition Device | doi.org/10.13182/FST91-A29488
Articles are hosted by Taylor and Francis Online.
The Texas fusion ignition experiment (IGNITEX) device is a 20 T single turn coil tokamak designed to produce and control an ignited plasma using ohmic heating alone. As a baseline design, IGNITEX has a 1.5 m major radius and operates at a toroidal field (TF) of 20 T on-axis. The small version of IGNITEX (R = 1.2 m) represents the smallest, low cost experiment that can produce fusion ignition under the saturated Neo-Alcator energy confinement scaling. The large version of IGNITEX (R = 2.1 m) represents the smallest experiment that can produce fusion ignition using the most pessimistic extrapolation of the Goldston scaling in L-mode. The Ignition Technology Demonstration (ITD) program was initiated to design, build, and test the operation of a single turn, 20 T, TF coil powered by an existing 9 MA, HPG power supply system. The ITD TF coil is a 0.06 scale of the IGNITEX and is now operating at the Center for Electromechanics at The University of Texas at Austin (CEM-UT). Data from the ITD experiment is used to confirm the complex computer model utilized for the IGNITEX design and analysis. In this paper, feasibility of the TF magnets is evaluated based on the electromechanical and thermomechanical considerations.