ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
IGNITEX Group
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1070-1075
Ignition Device | doi.org/10.13182/FST91-A29485
Articles are hosted by Taylor and Francis Online.
A relatively simple and inexpensive fusion ignition experiment is described. The experiment can be realized in a single-turn tokamak powered by homopolar generators. The discharge will proceed by ohmically heating a DT plasma to over 3 keV and then by using alpha heating to produce a stable ignited phase of operation. The technologies required for the realization of the experiment are in hand. A fulltorus, IGNITEX toroidal field magnet prototype has been operated to date at 15 Tesla. This record value in toroidal magnets establishes the possibility for ohmic ignition. The magnet prototype is scheduled for operation at 20 Tesla levels later this year. Various physics and engineering characteristics that contribute to the simplicity and low cost of the IGNITEX experiment are discussed. The IGNITEX concept has the potential to make a significant contribution to the development and study of fusion in the near term.