ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
IGNITEX Group
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1070-1075
Ignition Device | doi.org/10.13182/FST91-A29485
Articles are hosted by Taylor and Francis Online.
A relatively simple and inexpensive fusion ignition experiment is described. The experiment can be realized in a single-turn tokamak powered by homopolar generators. The discharge will proceed by ohmically heating a DT plasma to over 3 keV and then by using alpha heating to produce a stable ignited phase of operation. The technologies required for the realization of the experiment are in hand. A fulltorus, IGNITEX toroidal field magnet prototype has been operated to date at 15 Tesla. This record value in toroidal magnets establishes the possibility for ohmic ignition. The magnet prototype is scheduled for operation at 20 Tesla levels later this year. Various physics and engineering characteristics that contribute to the simplicity and low cost of the IGNITEX experiment are discussed. The IGNITEX concept has the potential to make a significant contribution to the development and study of fusion in the near term.