ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
IGNITEX Group
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1070-1075
Ignition Device | doi.org/10.13182/FST91-A29485
Articles are hosted by Taylor and Francis Online.
A relatively simple and inexpensive fusion ignition experiment is described. The experiment can be realized in a single-turn tokamak powered by homopolar generators. The discharge will proceed by ohmically heating a DT plasma to over 3 keV and then by using alpha heating to produce a stable ignited phase of operation. The technologies required for the realization of the experiment are in hand. A fulltorus, IGNITEX toroidal field magnet prototype has been operated to date at 15 Tesla. This record value in toroidal magnets establishes the possibility for ohmic ignition. The magnet prototype is scheduled for operation at 20 Tesla levels later this year. Various physics and engineering characteristics that contribute to the simplicity and low cost of the IGNITEX experiment are discussed. The IGNITEX concept has the potential to make a significant contribution to the development and study of fusion in the near term.