ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
M. Z. Hasan, T. Kunugi
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1030-1035
Blanket Technology | doi.org/10.13182/FST91-A29478
Articles are hosted by Taylor and Francis Online.
Convective heat transfer in the thermally developing region in a coolant channel of the first wall and limiter/divertor plates of a fusion reactor has been analyzed numerically. The surface heat flux on a coolant channel in these plasma facing components varies circumferentially. The flow is assumed MHD fully developed laminar in a circular tube with insulating wall and in the presence of a transverse magnetic field. Both the circumferential variation of the surface heat flux and the presence of a transverse magnetic field greatly affect the steady-state Nusselt number and thermal entry length. At the point where the magnetic field is normal to the tube wall, the steady-state Nusselt number can be increased as much as by a factor of 2 compared with 4.36 for non-MHD flow (parabolic velocity profile) and uniform surface heat flux. The nonuniformity of surface heat flux, on the other hand, can reduce the Nusselt number at the same location (also the point of maximum heat flux) to about 3.0. The transverse magnetic field can increase the thermal entry length by about 40% compared with that for non-MHD flow and uniform heat flux. The nonuniformity of surface heat flux and transverse magnetic field combined can increase the thermal entry length by a factor of 4.6. Neglect of this decrease in Nusselt number can result in an underestimation of the film temperature drop by 38% to 64%. The increase in the entry length would not affect the thermal-hydraulic designs of the first wall and divertor plate because, even with this increase, the entry length is short for liquid-metal coolants.