ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Albert K. Fischer
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1012-1017
Blanket Technology | doi.org/10.13182/FST91-A29475
Articles are hosted by Taylor and Francis Online.
The energetics and kinetics of the evolution of H2O and H2 from LiA1O2 are being studied by the temperature programmed desorption technique. The concentrations of H2, H2O, N2, and O2 in a helium stream during a temperature ramp are measured simultaneously with a mass spectrometer. Blank experiments with an empty sample tube showed that square wave spikes of H2 introduced into the helium gas stream were severely distorted by reaction with the tube walls. The tube could be stabilized, however, by sufficiently prolonged heat treatment with H2 so that H2 peaks would not be distorted up to approximately 923 K(650°C). The amount of H2 adsorption/desorption is small compared to the amount of H2O adsorption/desorption. After prolonged treatment with helium containing 990 ppm H2 at 400°C, H2O evolution into the He-H2 stream was observed during 473 to 1023 K (200 to 750°C) ramps at rates of 2 or 5.6 K/min. The different peak shapes reflecting this process were deconvoluted to show that they are composites of only 2 or 3 reproducible processes. The activation energies and pre-exponential terms were evaluated. The different behavior originates in the differences among different surface sites for adsorption. The interpretation of higher temperature peaks (above 873 K (650°C) must still consider the possibility of contributions from interactions with the steel walls. It was found that H2 enhances evolution of N2 from the steel.