ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep geologic repository progress—2025 Update
Editor's note: This article has was originally published in November 2023. It has been updated with new information as of June 2025.
Outside my office, there is a display case filled with rock samples from all over the world. It contains a disk of translucent, orange salt from the Waste Isolation Pilot Plant near Carlsbad, N.M.; a core of white-and-bronze gneiss from the site of the future deep geologic repository in Eurajoki, Finland; several angular chunks of fine-grained, gray claystone from the underground research laboratory at Bure, France; and a piece of coarse-grained granite from the underground research tunnel in Daejeon, South Korea.
M.C. Billone, C.C. Lin, H. Attaya, Y. Gohar
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 976-983
Blanket Technology | doi.org/10.13182/FST91-A29469
Articles are hosted by Taylor and Francis Online.
The U.S. design for the ITER tritium-breeding blanket consists of layers of Be multiplier, stainless steel cladding, and Li2O ceramic breeder. Tritium is recovered from the ceramic breeder by purging it with He + 0.2% H2. Models have been developed to describe the purge-flow thermal-hydraulics and gas reactions and the tritium retention/release due to lattice diffusion, desorption/adsorption, solubility/precipitation, and percolation through interconnected porosity. These have been incorporated into the steady-state code TIARA for the purpose of performing design calculations for Tritium Inventory and Release Analysis. Transient calculations for pulsed operation are done with a modified version of the DISPL code. The results of both steady-state and transient analyses for tritium retention and release are given for anticipated ITER operating conditions.