ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Keiji Miyazaki, Kensuke Konishi, Yoshihisa Gonno, Shoji Inoue, Masaki Saito
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 969-975
Blanket Technology | doi.org/10.13182/FST91-A29468
Articles are hosted by Taylor and Francis Online.
For reducing the liquid metal MHD pressure drop of the first wall cooling, a NaK experimental study was made on the effects of the electrical insulation of a rectangular duct. Three inner surfaces of a 2.1 mm thick 304-SS rectangular duct of 20.5 mm × 45.5 mm inner cross-section was coated by 1.3 mm thick FRP plates, remaining one of the 45.5 mm wide faces uninsulated to simulate the plasma facing first wall. The magnetic field was mainly applied in parallel to the uninsulated face. The results are summarized as follows. (1) The MHD pressure drop gradient is proportional to the mean flow velocity U and also to the magnetic flux density B. (2) It is about 2.3 times higher than the value predicted by Shercliff's theory for a completely insulated rectangular duct. (3) It is largely reduced, for the same velocity, down to 7.7% at B= 1.0 T and 5.1% at B= 1.5 T in comparison with the uninsulated duct. These results are encouraging for applying to fusion power reactors.