ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
M. Z. Hasan, T. Kunugi, M. Seki, M. Yokokawa, H. Ise, H. Kaburaki, The ARIES team
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 908-912
Advanced Reactor | doi.org/10.13182/FST91-A29460
Articles are hosted by Taylor and Francis Online.
The response of ARIES-I divertor plate to hard plasma disruptions has been analyzed numerically by a two-dimensional transient heat transfer code. For ARIES-I, the estimated thermal quench time is 0.3 msec and the average heat flux is 8.8×109 W/m2 with a peaking factor of 5. The divertor plate is made of 2.5 mm diameter SiC tubes with wall thickness of 0.5 mm and coated with a 2 mm layer of tungsten on the plasma facing side. The analysis predicts a total material erosion per disruption of about 111 µm without vapor shield and 48 µm with a simple vapor-shield model. The designated 1 mm of the tungsten coating for disruption is expected to last about 20 disruptions. A two-dimensional thermo-fluid dynamic analysis of the melt layer under the influence of buoyancy and surface tension forces has been performed. The results tend to imply that the melt layer is relatively unaffected during the disruption, especially for short thermal quench time.