ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep geologic repository progress—2025 Update
Editor's note: This article has was originally published in November 2023. It has been updated with new information as of June 2025.
Outside my office, there is a display case filled with rock samples from all over the world. It contains a disk of translucent, orange salt from the Waste Isolation Pilot Plant near Carlsbad, N.M.; a core of white-and-bronze gneiss from the site of the future deep geologic repository in Eurajoki, Finland; several angular chunks of fine-grained, gray claystone from the underground research laboratory at Bure, France; and a piece of coarse-grained granite from the underground research tunnel in Daejeon, South Korea.
M. Z. Hasan, T. Kunugi, M. Seki, M. Yokokawa, H. Ise, H. Kaburaki, The ARIES team
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 908-912
Advanced Reactor | doi.org/10.13182/FST91-A29460
Articles are hosted by Taylor and Francis Online.
The response of ARIES-I divertor plate to hard plasma disruptions has been analyzed numerically by a two-dimensional transient heat transfer code. For ARIES-I, the estimated thermal quench time is 0.3 msec and the average heat flux is 8.8×109 W/m2 with a peaking factor of 5. The divertor plate is made of 2.5 mm diameter SiC tubes with wall thickness of 0.5 mm and coated with a 2 mm layer of tungsten on the plasma facing side. The analysis predicts a total material erosion per disruption of about 111 µm without vapor shield and 48 µm with a simple vapor-shield model. The designated 1 mm of the tungsten coating for disruption is expected to last about 20 disruptions. A two-dimensional thermo-fluid dynamic analysis of the melt layer under the influence of buoyancy and surface tension forces has been performed. The results tend to imply that the melt layer is relatively unaffected during the disruption, especially for short thermal quench time.