ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
M. Z. Hasan, T. Kunugi, M. Seki, M. Yokokawa, H. Ise, H. Kaburaki, The ARIES team
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 908-912
Advanced Reactor | doi.org/10.13182/FST91-A29460
Articles are hosted by Taylor and Francis Online.
The response of ARIES-I divertor plate to hard plasma disruptions has been analyzed numerically by a two-dimensional transient heat transfer code. For ARIES-I, the estimated thermal quench time is 0.3 msec and the average heat flux is 8.8×109 W/m2 with a peaking factor of 5. The divertor plate is made of 2.5 mm diameter SiC tubes with wall thickness of 0.5 mm and coated with a 2 mm layer of tungsten on the plasma facing side. The analysis predicts a total material erosion per disruption of about 111 µm without vapor shield and 48 µm with a simple vapor-shield model. The designated 1 mm of the tungsten coating for disruption is expected to last about 20 disruptions. A two-dimensional thermo-fluid dynamic analysis of the melt layer under the influence of buoyancy and surface tension forces has been performed. The results tend to imply that the melt layer is relatively unaffected during the disruption, especially for short thermal quench time.