ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
K. Yoshikawa, T. Noma, Y. Yamamoto
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 870-875
Advanced Reactor | doi.org/10.13182/FST91-A29454
Articles are hosted by Taylor and Francis Online.
New methods of direct-energy conversion from energetic ions through the interaction between ions and electromagentic fields (i.e., Peniotron-type and Gyrotron-type converters,) were proposed, and the performance characteristics of the former are presented in this study. Numerical analyses have shown that the Peniotron-type converter has excellent performance characteristics in energy recovery from the energetic ion energy associated with the velocity component perpendicular to the axially applied magnetic fields in the converter, where ions make helical motions. The energy recovery efficiency is found to be dependent upon the energy spread, the incident angle, and to the deviation of the gyration center from the converter axis at its inlet. Control of the gyration center, in particular, is found to be most important. The analyses have shown that the new methods are essentially feasible in recovering energy from 14.7-MeV protons in a D-3He advanced fusion reactor with high efficiency.