ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep geologic repository progress—2025 Update
Editor's note: This article has was originally published in November 2023. It has been updated with new information as of June 2025.
Outside my office, there is a display case filled with rock samples from all over the world. It contains a disk of translucent, orange salt from the Waste Isolation Pilot Plant near Carlsbad, N.M.; a core of white-and-bronze gneiss from the site of the future deep geologic repository in Eurajoki, Finland; several angular chunks of fine-grained, gray claystone from the underground research laboratory at Bure, France; and a piece of coarse-grained granite from the underground research tunnel in Daejeon, South Korea.
J.Schwartz, L.Bromberg, D.R. Conn, J.H. Schultz, J.E.C. Williams
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 830-835
Advanced Reactor | doi.org/10.13182/FST91-A29447
Articles are hosted by Taylor and Francis Online.
The commercial viability of high field tokamaks is critically dependent upon the development of high field, high energy superconducting magnets. In this paper, superconducting magnet development requirements are discussed in terms of superconducting materials, structural materials and magnet engineering. Superconducting and structural materials are evaluated for processing techniques, properties and applicability to large scale magnets. Both conventional low Tc and high Tc ceramic superconductors are considered. For structural materials, cryogenic steels as well as fiber reinforced composite materials are discussed. The application of advanced materials, in particular high Tc superconductors and fiber reinforced composites, poses unique engineering problems that must be addressed. These problems are exacerbated by the very large stored energy inherent to any large high field magnet. Potential solutions are analyzed and areas of uncertainty are identified. A 30 year development program leading to a 24 Tesla toroidal field coil for a commercial reactor is outlined.