ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
G.L. Kulcinski, G.A. Emmert, J.P. Blanchard, L.A. El-Guebaly, H.Y. Khater, C.W. Maynard, E.A. Mogahed, J.F. Santarius, M.E. Sawan, I.N. Sviatoslavsky, L.J. Wittenberg
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 791-801
Advanced Reactor | doi.org/10.13182/FST91-A29441
Articles are hosted by Taylor and Francis Online.
The design of a 1000 MWe D-He3 tokamak fusion power plant, Apollo-L3, is presented. The reactor operates in the first plasma stability regime and relies on both direct and thermal conversion of the thermonuclear energy to electricity. The synchrotron energy is converted directly to electricity via rectennas at 80% efficiency and the thermal energy is converted through an organic coolant at 44% efficiency. It is designed with a low neutron wall loading (0.1 MW/m2) which allow a permanent first wall to be used. The overall net efficiency is 47%. A low level of induced radioactivity and the low afterheat in the reactor allows the low activation ferritic steel waste to be treated as Class A and the system to be considered as a Level 1 (Inherently Safe) device. The cost of electricity (COE) is 69 mills/kWh making it competitive with recent advanced DT reactor designs.