ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Denis E. Beller, Len J. Lorence, Michael T. Tobin
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 770-774
Inertial Fusion | doi.org/10.13182/FST91-A29438
Articles are hosted by Taylor and Francis Online.
Major applications of the Laboratory Microfusion Facility (LMF) will include nuclear effects simulation testing and commercial development of inertial fusion. Recent studies of the use of the LMF for x-ray effects experiments have demonstrated that this testing is possible at high-dose and dose rate with good fidelity because neutron effects can be minimized. To insure a basis for comparison between design studies at Sandia National Laboratories Albuquerque (SNLA), Lawrence Livermore National Laboratory (LLNL), and the Air Force Institute of Technology (AFIT), we developed a computational benchmark. The benchmark geometry includes a spherical photon scatterer and a conical neutron shield, both of LiH enriched to 96.5% 6Li. The benchmark x-ray source is a 15-keV Plankian spectrum, and the neutron source is mono-energetic 14.1-MeV neutrons. We compared results with the following computer codes and cross section libraries: MORSE and DABL69 at AFIT, TART and ENDL at LLNL, and MCNP and ENDL at SNLA. We present a comparison of the predicted x-ray, neutron, and n-gamma doses at a 3-m distant, 2-m diameter exposure plane. We compare total doses and peak dose rates; and we discuss differences in results.