ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Robert L. Bieri
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 752-757
Inertial Fusion | doi.org/10.13182/FST91-A29435
Articles are hosted by Taylor and Francis Online.
The SAFIRE (Systems Analysis for ICF Reactor Economics) code was adapted to model a power plant using a HYLIFE-II reactor chamber. The code was then used to examine the dependence of the plant capital costs and the busbar cost of electricity (COE) on a variety of design parameters (type of driver, chamber repetition rate, and net electric power). The results show the most attractive operating space for each set of driver/target assumptions and quantify the benefits of improvements in key design parameters. The basecase plant was a 1,000-MWe plant containing a reactor vessel driven by an induction linac heavy-ion accelerater, run at 8 Hz with a driver energy of 6.73 MJ and a target yield of 350 MJ. The total direct cost for this plant was $2.6 billion. (All costs in this paper are given in equivalent 1988 dollars.) The COE was 8.5 ¢/(kW·h). The COE and total capital costs for a 1,000-MWe base plant are nearly independent of the chosen combination of repetition rate and driver energy for a driver operating between 4 and 10 Hz. For comparison, the COE for a coal or future fission plant would be 4.5–5.5 ¢/(kW·h). The COE for a 1,000-MWe plant could be reduced to 7.5 ¢/(kW·h) by using advanced targets and could be cut to 6.5 ¢/(kW·h) with conventional targets, if the driver cost could be cut in half. There is a large economy of scale with heavy-ion-driven inertial confinement fusion (ICF) plants. A 2,000-MWe plant with a heavy-ion driver and a HYLIFE-II chamber would have a COE of only 5.8 ¢/(kW·h).