ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
X.M. Chen, V.E. Schrock
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 727-731
Inertial Fusion | doi.org/10.13182/FST91-A29431
Articles are hosted by Taylor and Francis Online.
In both earlier and current ICF blanket designs a problem of a free annulus radial expansion emerges after microexplosion. If the annulus fractures, it could increase the total liquid surface area available for condensation by hundreds times. Whether the fragmentation can happen or not depends on the internal pressure and surface stability. In this paper a model based on incompressible cylindrically symmetric flow is used to get a theoretical solution similar to that of the Rayleigh's solution for bubble dynamics. The pressure inside the annulus is found positive at all time but the peak is lowering during the expansion. Besides, both surfaces are Taylor stable during such motion. Thus, it is concluded that an annulus in outward radial motion will not cavitate or breakup.