ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
X.M. Chen, V.E. Schrock
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 727-731
Inertial Fusion | doi.org/10.13182/FST91-A29431
Articles are hosted by Taylor and Francis Online.
In both earlier and current ICF blanket designs a problem of a free annulus radial expansion emerges after microexplosion. If the annulus fractures, it could increase the total liquid surface area available for condensation by hundreds times. Whether the fragmentation can happen or not depends on the internal pressure and surface stability. In this paper a model based on incompressible cylindrically symmetric flow is used to get a theoretical solution similar to that of the Rayleigh's solution for bubble dynamics. The pressure inside the annulus is found positive at all time but the peak is lowering during the expansion. Besides, both surfaces are Taylor stable during such motion. Thus, it is concluded that an annulus in outward radial motion will not cavitate or breakup.