ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Recent surveys confirm high levels of U.S. nuclear support
Surveys have consistently indicated that public support in the United States for the use of nuclear energy has been increasing in recent years. Four recent surveys continue to suggest that near-record-high numbers of Americans support nuclear energy. However, the survey results differ—sometimes widely—in the details of their findings.
X.M. Chen, V.E. Schrock
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 727-731
Inertial Fusion | doi.org/10.13182/FST91-A29431
Articles are hosted by Taylor and Francis Online.
In both earlier and current ICF blanket designs a problem of a free annulus radial expansion emerges after microexplosion. If the annulus fractures, it could increase the total liquid surface area available for condensation by hundreds times. Whether the fragmentation can happen or not depends on the internal pressure and surface stability. In this paper a model based on incompressible cylindrically symmetric flow is used to get a theoretical solution similar to that of the Rayleigh's solution for bubble dynamics. The pressure inside the annulus is found positive at all time but the peak is lowering during the expansion. Besides, both surfaces are Taylor stable during such motion. Thus, it is concluded that an annulus in outward radial motion will not cavitate or breakup.