ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
DOE-NE’s newest fuel consortium includes defense from antitrust laws
The Department of Energy's Office of Nuclear Energy is setting up a nuclear fuel Defense Production Act Consortium that will seek voluntary agreements with interested companies “to increase fuel availability, provide more access to reliable power, and end America’s reliance on foreign sources of enriched uranium and critical materials needed to power the nation’s nuclear renaissance.” According to an August 22 DOE press release, the plan invokes the Defense Production Act (DPA) to give consortium members “defense from antitrust laws when certain criteria are met” and “allow industry consultation to develop plans of action.” DOE-NE is looking for interested companies to join the consortium ahead of its first meeting, scheduled for October 14.
Robert L. Bieri, Michael W. Guinan
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 673-678
Inertial Fusion | doi.org/10.13182/FST19-673
Articles are hosted by Taylor and Francis Online.
Grazing incidence metal mirrors (GIMMs) have been examined to replace dielectric mirrors for the final elements in a laser beam line for an inertial confinement fusion reactor. For a laser driver with a wavelength from 250 to 500 nm in a 10-ns pulse, irradiated mirrors made of Al, Al alloys, or Mg were found to have calculated laser damage limits of 0.3–2.3 J/cm2 of beam energy and neutron lifetime fluence limits of over 5 × 1020 14 MeV n/cm2 (or 2.4 full power years when used in a 1,000-MW reactor) when used at grazing incidence (an angle of incidence of 85 degrees) and operated at room temperature or at 77 K. A final focusing system including mirrors made of Al alloy 7475 at room temperature or at liquid nitrogen temperatures used with a driver which delivers 5 MJ of beam energy in 32 beams would require 32 mirrors of roughly 10 m2 each. This paper briefly reviews the methods used in calculating the damage limits for GIMMs and discusses critical issues relevant to the integrity and lifetime of such mirrors in a reactor environment.