ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Robert L. Bieri, Michael W. Guinan
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 673-678
Inertial Fusion | doi.org/10.13182/FST19-673
Articles are hosted by Taylor and Francis Online.
Grazing incidence metal mirrors (GIMMs) have been examined to replace dielectric mirrors for the final elements in a laser beam line for an inertial confinement fusion reactor. For a laser driver with a wavelength from 250 to 500 nm in a 10-ns pulse, irradiated mirrors made of Al, Al alloys, or Mg were found to have calculated laser damage limits of 0.3–2.3 J/cm2 of beam energy and neutron lifetime fluence limits of over 5 × 1020 14 MeV n/cm2 (or 2.4 full power years when used in a 1,000-MW reactor) when used at grazing incidence (an angle of incidence of 85 degrees) and operated at room temperature or at 77 K. A final focusing system including mirrors made of Al alloy 7475 at room temperature or at liquid nitrogen temperatures used with a driver which delivers 5 MJ of beam energy in 32 beams would require 32 mirrors of roughly 10 m2 each. This paper briefly reviews the methods used in calculating the damage limits for GIMMs and discusses critical issues relevant to the integrity and lifetime of such mirrors in a reactor environment.