ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Recent surveys confirm high levels of U.S. nuclear support
Surveys have consistently indicated that public support in the United States for the use of nuclear energy has been increasing in recent years. Four recent surveys continue to suggest that near-record-high numbers of Americans support nuclear energy. However, the survey results differ—sometimes widely—in the details of their findings.
William L. Barr
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 498-502
Technical Paper | Plasma Engineering | doi.org/10.13182/FST91-A29390
Articles are hosted by Taylor and Francis Online.
A physics model is developed for estimating the principal parameters of the edge plasma in a large tokamak with a poloidal divertor. The model is essentially one-dimensional, but it includes transverse scale lengths that are derived from power balance. The model allows highly elongated magnetic configurations with either a double or a single null. The power flowing into the edge plasma, the power radiated from the edge plasma, and the power incident on the divertor are all assumed to be known. The plasma density at the separatrix is also assumed to be known. Equations developed from the model give the plasma temperature at the midplane separatrix, the plasma temperature and density at the divertor, and the transverse scale length for power flow in the edge plasma. The scaling relations for the plasma parameters and an expression for the peak heat flux at the divertor are derived. The basic assumption made in developing the model is that the transverse scale lengths can be mapped from one region in the edge plasma to another by the conservation of magnetic flux.