ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
R. K. Rout, M. Srinivasan, A. Shyam, V. Chitra
Fusion Science and Technology | Volume 19 | Number 2 | March 1991 | Pages 391-394
Technical Note | doi.org/10.13182/FST91-A29374
Articles are hosted by Taylor and Francis Online.
A 2-kJ Mather plasma focus device is used to deuterate the top end surface (or tip) of its central titanium electrode to investigate the occurrence of anomalous nuclear reactions in the context of the “cold fusion” phenomenon. The tip of the central titanium electrode is found to develop at least a few tens of microcuries of tritium after several plasma focus discharges. Neither the tritium impurity level in the deuterium gas used in the experiment nor the tritium branch of the d-d reactions that are known to occur in plasma focus devices can account for such activity in the electrode. Anomalous nuclear reactions in the deuterated titanium lattice appear to be the most probable source of this high activity.