ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Kenji Morita
Fusion Science and Technology | Volume 19 | Number 4 | July 1991 | Pages 2083-2091
Technical Paper | Carbon Material Special | doi.org/10.13182/FST91-A29343
Articles are hosted by Taylor and Francis Online.
The sputtering of metal atoms and the retention and release of hydrogen isotopes in metal-carbon composite layer materials are discussed. The criteria for suppression of metal sputtering are derived on the basis of the concentration of carbon atoms segregated at the surface, which is calculated taking into account segregation and dissolution at the surface and at the interface as well as diffusion. Data on the ion flux dependence of the sputtering yield of metal from different metal-carbon systems are presented, and the critical flux and thickness required for suppression of metal sputtering are discussed. Furthermore, data on retention and release of implanted hydrogen isotopes are presented and compared with those for graphite.