ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
U.K. consents to Hinkley Point B decommissioning
The U.K. government’s Office for Nuclear Regulation has granted EDF Energy formal consent to decommission the Hinkley Point B nuclear power plant in Somerset, England. The two-unit advanced gas-cooled reactor was permanently shut down in August 2022, and site owner EDF applied to ONR for decommissioning consent in August 2024.
Jaap G. van der Laan, Henk Th. Klippel, Rob C. L. van der Stad, Co Bakker
Fusion Science and Technology | Volume 19 | Number 4 | July 1991 | Pages 2070-2075
Technical Paper | Carbon Material Special | doi.org/10.13182/FST91-A29341
Articles are hosted by Taylor and Francis Online.
The response of plasma-facing materials to off-normal high heat loads expected in Next European Torus/International Thermonuclear Experimental Reactor (NET/ITER) disruptions has been studied by both experimental and numerical simulations. Experiments have been performed on a number of pyrolytic graphites and carbon-fiber composites. The measured erosion is compared with numerical predictions by a transient heat load code. The effect of variations in thermophysical material parameters on thermal erosion behavior is discussed. Cracking is observed on the surface of pyrolytic graphites, even below the erosion threshold.