ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
John Mandrekas, W. M. Stacey, Jr.
Fusion Science and Technology | Volume 19 | Number 1 | January 1991 | Pages 57-77
Technical Paper | Plasma Engineering | doi.org/10.13182/FST91-A29316
Articles are hosted by Taylor and Francis Online.
A zero-dimensional, time-dependent, particle and power balance code was developed and used to evaluate the effectiveness of different burn control methods for the stabilization of unstable ignited and subignited operating points of the International Thermonuclear Experimental Reactor (ITER) physics phase machine. Based on the results of our calculations, we conclude that the operation of ITER at thermally unstable operating points is physically and technologically feasible. Control with auxiliary power modulation seems to be the method of choice for the control of subignited unstable points, while other methods such as modulation of the fueling rate and high-Z impurity injection can also be used, especially for the control of unstable ignited points where auxiliary power modulation cannot be used.