ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Recent surveys confirm high levels of U.S. nuclear support
Surveys have consistently indicated that public support in the United States for the use of nuclear energy has been increasing in recent years. Four recent surveys continue to suggest that near-record-high numbers of Americans support nuclear energy. However, the survey results differ—sometimes widely—in the details of their findings.
Š. Miljanić, N. Jevtić, S. Pešić, M. Ninković, D. Nikolić, M. Josipović, Lj. Petkovska, S. Bačić, T. Šutej, S. Matić
Fusion Science and Technology | Volume 18 | Number 2 | September 1990 | Pages 340-346
Technical Notes on Cold Fusion | doi.org/10.13182/FST90-A29305
Articles are hosted by Taylor and Francis Online.
An attempt was made to replicate electrochemical and gas-load cold fusion neutron counts. The best results for electrolysis were counts of 2.5 times background for 45 min. The cold fusion rate was found to be <2.09 × 10−22 fusion/(d-d)·s−1. For the gas-load method, an effect was seen twice, with neutron counts on the order of 3 to 4 times background over 1.5 h. The search for excess tritium in the heavy water from the electrolytic cells proved negative. However, mass spectroscopy of the D2 gas before and after the gas-load experiments indicated a change in the mass 3 to mass 2 ratio from 0.53 to 1.66.