ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
William L. Barr, B. Grant Logan
Fusion Science and Technology | Volume 18 | Number 2 | September 1990 | Pages 251-256
Technical Paper | Divertor System | doi.org/10.13182/FST90-A29297
Articles are hosted by Taylor and Francis Online.
A new divertor configuration is suggested as a possible solution to the problems of high heat flux and erosion at the divertors in large high-power tokamaks. The proposed configuration is a toroidally symmetrical slot in the divertor that allows part of the edge plasma and most of its power to enter a cavity in a thin annular sheet. The large surface area of the sheet is exposed to interaction with gas in the cavity. This results in radiation and a reflux of fast neutral atoms, both of which transport power to the cavity walls. The heat flux is reduced because the power is spread over a much larger area. Erosion due to sputtering is also reduced because the decreased power flux reduces the sheath potential and, therefore, the average ion impact energy. Sputtering by fast neutrals should not be a serious problem because neutrals are not accelerated by a sheath as are ions. Helium ash and impurity atoms that are ionized within the cavity tend to be trapped there by the electric field that must exist throughout the source region in order to make the removal rates for electrons and ions both equal to the production rate.