ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The newest era of workforce development at ANS
As most attendees of this year’s ANS Annual Conference left breakfast in the Grand Ballroom of the Chicago Downtown Marriott to sit in on presentations covering everything from career pathways in fusion to recently digitized archival nuclear films, 40 of them made their way to the hotel’s fifth floor to take part in the second offering of Nuclear 101, a newly designed certification course that seeks to give professionals who are in or adjacent to the industry an in-depth understanding of the essentials of nuclear energy and engineering from some of the field’s leading experts.
Jeffrey N. Brooks
Fusion Science and Technology | Volume 18 | Number 2 | September 1990 | Pages 239-250
Technical Paper | Divertor System | doi.org/10.13182/FST90-A29296
Articles are hosted by Taylor and Francis Online.
Sputtering erosion of the proposed International Thermonuclear Experimental Reactor (ITER) divertor has been analyzed using the REDEP computer code. A carbon-coated plate, as well as beryllium and tungsten plates, have been examined at medium and low plasma edge temperatures. Peak net erosion rates for carbon and beryllium are very high (∼20 to 80 cm/burn · yr) though an order of magnitude less than the gross rates. Tritium buildup rates in co-deposited carbon surface layers may also be high (∼50 to 250 kg/burn · yr). Plasma contamination from divertor sputtering, however, is low (≲0.5%), Operation with low-Z divertor plates at high duty factors, therefore, appears unacceptable due to erosion, but may work for low duty factor (∼2%) “physics phase” operation. Sweeping of the poloidal field lines at the divertor can reduce erosion, typically by factors of ∼2 to 8. A tungsten-coated plate works well, from the erosion standpoint, for plasma plate temperatures of ∼40 eV or less.