ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Donald A. Spong, Jeff A. Holmes, Jean-n. Leboeuf, Peggy Jo Christenson
Fusion Science and Technology | Volume 18 | Number 3 | November 1990 | Pages 496-504
Alpha Particles in Fusion Research | Technical Paper | doi.org/10.13182/FST90-A29285
Articles are hosted by Taylor and Francis Online.
Alpha-particle populations can significantly alter existing magnetohydrodynamic (MHD) instabilities in tokamaks through kinetic effects and coupling to otherwise stable shear Alfvén waves. Resonances of the trapped alpha-particle precessional drift, with the usual ballooning mode diamagnetic frequency (ω*i/2) and the toroidicity-induced Alfvén eigenmode (TAE), are considered. These are examined for noncircular tokamaks in the high-n ballooning limit using an isotropic alpha-particle slowing down distribution and retaining the full-energy and pitch-angle dispersion in the alpha-particle drift frequency. Applying this to the Compact Ignition Tokamak (CIT) and the International Thermonuclear Experimental Reactor (ITER) indicates that ballooning instabilities can persist at betas below the ideal MHD threshold. These are especially dominated by the destabilization of the TAE mode. In addition, a hybrid fluid-particle approach for simulating alpha-particle effects on pressure-gradient driven instabilities is described.