ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
U.K. consents to Hinkley Point B decommissioning
The U.K. government’s Office for Nuclear Regulation has granted EDF Energy formal consent to decommission the Hinkley Point B nuclear power plant in Somerset, England. The two-unit advanced gas-cooled reactor was permanently shut down in August 2022, and site owner EDF applied to ONR for decommissioning consent in August 2024.
Sergei I. Krasheninnikov, Tatyana K. Soboleva, K. Gac
Fusion Science and Technology | Volume 18 | Number 3 | November 1990 | Pages 425-428
Alpha Particles in Fusion Research | Technical Paper | doi.org/10.13182/FST90-A29277
Articles are hosted by Taylor and Francis Online.
Impurity (helium) ion transport kinetics in a tokamak divertor along magnetic field lines is considered, both analytically and numerically, for the case when the ratio of collisional mean-free-path to the characteristic length of plasma parameter variation is not too small. To obtain the numerical solution of the kinetics equation, the stochastic modeling method is used. For International Thermonuclear Experimental Reactor (ITER) divertor plasma conditions, the influence of thermal force on helium ions is expected to be decreased considerably. As a result, the helium ion flux toward the divertor plates may be significantly enhanced compared to that predicted by the hydrodynamics approach.