ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The newest era of workforce development at ANS
As most attendees of this year’s ANS Annual Conference left breakfast in the Grand Ballroom of the Chicago Downtown Marriott to sit in on presentations covering everything from career pathways in fusion to recently digitized archival nuclear films, 40 of them made their way to the hotel’s fifth floor to take part in the second offering of Nuclear 101, a newly designed certification course that seeks to give professionals who are in or adjacent to the industry an in-depth understanding of the essentials of nuclear energy and engineering from some of the field’s leading experts.
Ezio Bittoni, Marcel Haegi
Fusion Science and Technology | Volume 18 | Number 3 | November 1990 | Pages 373-383
Alpha Particles in Fusion Research | Technical Paper | doi.org/10.13182/FST90-A29270
Articles are hosted by Taylor and Francis Online.
Calculation of alpha-particle confinement by a guiding center orbit-following numerical code requires the computation of very long particle trajectories. Due to their enormous length, these computations are subject to the possible accumulation of small errors, and the alpha-particle population is usually extrapolated from a single-particle history for every point of the initial parameter space. To overcome these difficulties, a numerical diffusion coefficient is derived for each point of the initial parameter space by averaging over a certain number of single-particle histories for each point of this space. This method has been applied to fast-alpha-particle confinement of the Next European Torus benchmark and the numerically derived diffusion coefficients are compared with analytical expressions from theoretical models.