ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Schulz Electric™ Refurbishes Critical Circulating Water Pump Motor in Only Four Days
Schulz Electric™ was contacted by a nuclear power plant in the New England region that serves a community of over 2 million homes. After five years of service, a 1500 HP, 4 kV, 24-pole circulating water pump motor (measuring approximately 7’ wide, 8’ tall, and weighing several tons) needed refurbishing while the plant was still online. To add to their concern, the power plant is located close to the ocean. The aging motor was not only approaching the end of its serviceable life, but was highly susceptible to moisture intrusion and the salt-laden air, which can build up in air passages within the motor. These environmental conditions can lead to elevated operating temperatures and corrosion developing on the rotor, stator, and shaft components. These factors combined, placed the plant at an increased risk of downtime that could have potentially led to a significant loss of revenue if they were forced into a shutdown event.
Keiji Tani, Masafumi Azumi, Tomonori Takizuka
Fusion Science and Technology | Volume 18 | Number 4 | December 1990 | Pages 625-632
Alpha Particles in Fusion Research | doi.org/10.13182/FST90-A29255
Articles are hosted by Taylor and Francis Online.
The feasibility of passive burn control method using toroidal field ripple-degraded alpha-particle confinement with free expansion of the major radius has been confirmed by a 1.5-dimensional transport code. In this transport code, a scaling of the ripple loss of alpha particles derived from the results of an orbit-following Monte Carlo code is used. For passive burn control, however, >5% of the major radius margin is necessary and the resulting ripple-induced power loss of alpha particles exceeds 20%. Passive burn control in combination with feedback control of the field ripple, a hybrid burn control method, demonstrates very effective burn temperature control. In hybrid burn control, the necessary major radius margin and the controlled field ripple are only 2 to 3% and δc ≲ 1%, respectively. The resulting total power loss of alpha particles is <15%.