ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Vasilij G. Kiptilyj
Fusion Science and Technology | Volume 18 | Number 4 | December 1990 | Pages 583-590
Alpha Particles in Fusion Research | doi.org/10.13182/FST90-A29250
Articles are hosted by Taylor and Francis Online.
The capabilities of new methods of fusion alpha-particle diagnostics based on nuclear reactions are discussed. Particularly, the resonant capture reactions between confined fast alpha particles and low-Z artificial impurities in the plasma is examined. In this case, the intensity of the decay gamma rays is proportional to the alpha-particle concentration at resonance energy. Another method is based on Doppler shape analysis of the 4.44-MeV gamma-ray spectra from the 9Be(α, n1γ)12C reaction. Results of an in-beam study of this diagnostic reaction are given. Some questions concerning the gamma spectrometer, a collimator, and a radiation shield are discussed. Estimates of the reaction rates and signal values in the Tokamak Fusion Test Reactor, T-14, Compact Ignition Tokamak (CIT), and International Thermonuclear Experimental Reactor (ITER) are presented. In conclusion, the use of gamma spectroscopy in the diagnostics fusion protons in deuterium-deuterium plasma is examined.