ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Charles D. Scott, John E. Mrochek, Timothy C. Scott, Gordon E. Michaels, Eugene Newman, Milica Petek
Fusion Science and Technology | Volume 18 | Number 1 | August 1990 | Pages 103-114
Technical Note | Cold Fusion | doi.org/10.13182/FST90-A29235
Articles are hosted by Taylor and Francis Online.
Excess heat and apparent increases in the neutron and gamma-ray count rates have been observed in a series of tests performed at Oak Ridge National Laboratory to study the electrolysis of heavy water in the presence of palladium cathodes. For these tests, LiOD at a concentration of 0.1 to 1 N in D2O was used in an insulated glass electrochemical cell in which the temperature was controlled and heat was removed by flowing water in a cooling jacket. Results of two of the tests, one of which lasted for over 1900 h, are reported. In the latter test, an internal D2-O2 recombiner was incorporated into the cell to give a closed system without off-gas. Excess power, usually in the range of 5 to 10%, was detected for periods of many hours. Some of these events were initiated and could be extended by system perturbations. On three separate occasions, the mean neutron count rate exceeded the background by statistically significant values; one of these was apparently coincident with an extended period of excess heat generation. Increases in the gamma-ray count rates were apparently also coincident with two of the periods of excess neutrons.