ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The newest era of workforce development at ANS
As most attendees of this year’s ANS Annual Conference left breakfast in the Grand Ballroom of the Chicago Downtown Marriott to sit in on presentations covering everything from career pathways in fusion to recently digitized archival nuclear films, 40 of them made their way to the hotel’s fifth floor to take part in the second offering of Nuclear 101, a newly designed certification course that seeks to give professionals who are in or adjacent to the industry an in-depth understanding of the essentials of nuclear energy and engineering from some of the field’s leading experts.
Gilles Bourque, Bernard Terreault, Brian C. Gregory, Guenther W. Pacher, Horst D. Pacher, Barry L. Stansfield, Dennis Whyte, W. Zuzak
Fusion Science and Technology | Volume 17 | Number 4 | July 1990 | Pages 588-596
Technical Paper | Experimental Device | doi.org/10.13182/FST90-A29195
Articles are hosted by Taylor and Francis Online.
Plasma contamination due to the generation of impurity molecules has been studied by mass spectrometry and by visible emission spectroscopy in the Tokamak de Varennes. The dominant effects are carbon monoxide formation, which is correlated with the residual water vapor pressure in the vacuum chamber, and the formation of C1, C2, and C3 hydrocarbons. The measured molecular fluxes are sufficient to account for a large part of the plasma impurity content. Visible spectroscopy indicates that the plasma is significantly affected by these chemical impurity sources. The molecules appear to originate mainly from the stainless steel walls rather than from the graphite limiters.