ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
U.K. consents to Hinkley Point B decommissioning
The U.K. government’s Office for Nuclear Regulation has granted EDF Energy formal consent to decommission the Hinkley Point B nuclear power plant in Somerset, England. The two-unit advanced gas-cooled reactor was permanently shut down in August 2022, and site owner EDF applied to ONR for decommissioning consent in August 2024.
Daren P. Stotler, Neil Pomphrey
Fusion Science and Technology | Volume 17 | Number 4 | July 1990 | Pages 577-587
Technical Paper | Plasma Engineering | doi.org/10.13182/FST90-A29194
Articles are hosted by Taylor and Francis Online.
A time-dependent zero-dimensional code has been developed to assess the pulse length and auxiliary heating requirements of Compact Ignition Tokamak (CIT) designs. By taking a global approach to the calculation, parametric studies can be easily performed. The accuracy of the procedure is tested by comparison with the Tokamak Simulation Code, which uses theory-based thermal diffusivities, A series of runs is carried out at various levels of energy confinement for each of three possible CIT configurations. It is found that for cases of interest ignition or an energy multiplication factor Q ≳ 7 can be attained within the first half of the planned 5-s flattop with 10 to 40 MW of auxiliary heating. These results are supported by analytic calculations.