ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
U.K. consents to Hinkley Point B decommissioning
The U.K. government’s Office for Nuclear Regulation has granted EDF Energy formal consent to decommission the Hinkley Point B nuclear power plant in Somerset, England. The two-unit advanced gas-cooled reactor was permanently shut down in August 2022, and site owner EDF applied to ONR for decommissioning consent in August 2024.
V. E. Bykov, A. V. Georgievskij, V. V. Demchenko, Yu. K. Kuznetsov, Yu. A. Litvinenko, A. V. Longinov, O. S. Pavlichenko, V. A. Rudakov, K. N. Stepanov, V. T. Tolok
Fusion Science and Technology | Volume 17 | Number 1 | January 1990 | Pages 140-147
Technical Paper | Stellarator System | doi.org/10.13182/FST90-A29177
Articles are hosted by Taylor and Francis Online.
The analysis of an l = 2 torsatron with a relatively small pitch angle of the helical winding, which requires an additional toroidal field (TF), is presented. The main advantage of this torsatron design, as compared with a conventional torsatron having a large helical winding pitch angle and no TF coils, is the reduction of the helical winding current and the helical ripple of the magnetic field. This facilitates construction and operation of the most complicated component of the magnetic system, the helical winding, and also reduces the plasma losses due to magnetic field ripple. An experimental device of this type, URAGAN-2M, now under construction at the Kharkov Institute of Physics and Technology, is described. The reactor prospects of this concept are also discussed.