ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The newest era of workforce development at ANS
As most attendees of this year’s ANS Annual Conference left breakfast in the Grand Ballroom of the Chicago Downtown Marriott to sit in on presentations covering everything from career pathways in fusion to recently digitized archival nuclear films, 40 of them made their way to the hotel’s fifth floor to take part in the second offering of Nuclear 101, a newly designed certification course that seeks to give professionals who are in or adjacent to the industry an in-depth understanding of the essentials of nuclear energy and engineering from some of the field’s leading experts.
Y. Oka, S. Koshizuka, S. Kondo
Fusion Science and Technology | Volume 16 | Number 2 | September 1989 | Pages 263-267
Technical Note | doi.org/10.13182/FST89-A29160
Articles are hosted by Taylor and Francis Online.
A 1000-MW(electric) fusion power reactor concept based on electrochemically induced D-Dn, D-Dp, and deuterium-tritium reactions is presented. A D- He reaction is not possible because He is not absorbed in the electrode. The concept of a tube-type fuel cell is presented. The inner surface of the tube is laminated with palladium. The cell provides a large cathode surface and efficient heat transport to the water coolant. The fuel assemblies and bundles of fuel tubes are installed in the pressure vessel. The reactor system is very similar to a pressurized water reactor, though the reactor internals are much simplified due to the elimination of fission fuel pellets and control rods. The spatial power distribution of the reactor core is very flat compared with that of fission reactors.