ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Y. Oka, S. Koshizuka, S. Kondo
Fusion Science and Technology | Volume 16 | Number 2 | September 1989 | Pages 260-262
Technical Note | doi.org/10.13182/FST89-A29159
Articles are hosted by Taylor and Francis Online.
Conceptual design of an electrochemically induced deuterium-tritium fusion power reactor has been carried out. A double-tube-type fuel cell is proposed for efficient electrolysis and to provide a large cathode area. The fuel cell tubes are assembled like a pressurized water reactor (PWR) control rod cluster. The tritium fuel is continuously fed through the cluster rod to the cell. The voltage for the electrolysis is supplied through the rod. The tritium breeding Li2O is contained in a hexagonal blanket through which coolant tubes penetrate. The fuel cell tube is inserted in the coolant tube and the water coolant flows through the annuli. The tritium is continuously recovered from the blanket by using helium gas. The blanket assemblies are contained in the pressure vessel. The tubes of the helium gas and the cluster rods penetrate through the upper dome of the vessel. The shape of the reactor and the coolant system are similar to those of PWRs. The vessel is somewhat squat, because the height of the blanket is approximately half that of a PWR core.