ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Vern C. Rogers, Gary M. Sandquist
Fusion Science and Technology | Volume 16 | Number 2 | September 1989 | Pages 254-259
Technical Note | doi.org/10.13182/FST89-A29158
Articles are hosted by Taylor and Francis Online.
Nuclear fusion between deuterons under ambient conditions has been observed in the metal cathode of an electrolysis cell with an electrolyte of heavy water. The evidence for the fusion reaction is derived primarily from the detection of a low level of 2.45-MeV neutrons presumably from the neutron branch of the deuterium fusion reaction. However, the estimated fusion energy yield associated with the neutron output is insufficient to account for the majority of the reported energy gain if the neutron-proton branch of the deuterium fusion reaction remains about equal to ambient conditions. The excess energy gain may arise from an unobserved chemical reaction or an unfamiliar nuclear reaction. Reported evidence of an excess of 4He in the vicinity of the cathode may indicate that a 4He branch from the deuterium fusion reaction may proceed at ambient conditions through internal electron conversion without a large release of gamma rays. These issues are explored, and attempts are made to provide physical mechanisms and explanations for the cold fusion experimental observations.