ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Robert W. Bussard
Fusion Science and Technology | Volume 16 | Number 2 | September 1989 | Pages 231-236
Technical Note | doi.org/10.13182/FST89-A29152
Articles are hosted by Taylor and Francis Online.
A model of deuterium-deuterium (D-D) fusion in metal lattices is presented based on two phenomena: (a) reactions between virtual-state pairs of deuterons “bound” by electrons of high effective mass m* and (b) deuterium energy upscattering by fast ions from fusion or tritium reactions with virtual-state nuclear structure groups in palladium nuclei. Since m* is a decreasing function of deuterium ion bulk density n0, the exponential barrier tunneling factor decreases rapidly with m*. As a result, the fusion rate reaches a maximum at a loading density above zero but less than saturation. This can explain observations of transient neutron output from the (3He,n) branch of D-D fusion. At low energy, D-D reactions favor the (T,p) branch. Fast product tritium may be captured by palladium isotopes to form excited-state Ag*, removing tritium from the system and preventing deuterium-tritium fusion. This may decay by alpha or proton emission, yielding fast ions and excited state Rh* or Pd*. Fast ion collisional “trapping” may occur at Fermi electron speeds, enhancing in situ upscattering and yielding increased D-D reaction rates. Analysis of the dynamics of these processes suggests conditions for exponential growth.