ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Uranium prices boosted through May’s end
Uranium futures rose to $71.90 per pound on June 2, according to online analysis firm Trading Economics. That price was near its highest level since early February—in contrast to an 18-month low in prices reached in mid-March.
Robert W. Bussard
Fusion Science and Technology | Volume 16 | Number 2 | September 1989 | Pages 231-236
Technical Note | doi.org/10.13182/FST89-A29152
Articles are hosted by Taylor and Francis Online.
A model of deuterium-deuterium (D-D) fusion in metal lattices is presented based on two phenomena: (a) reactions between virtual-state pairs of deuterons “bound” by electrons of high effective mass m* and (b) deuterium energy upscattering by fast ions from fusion or tritium reactions with virtual-state nuclear structure groups in palladium nuclei. Since m* is a decreasing function of deuterium ion bulk density n0, the exponential barrier tunneling factor decreases rapidly with m*. As a result, the fusion rate reaches a maximum at a loading density above zero but less than saturation. This can explain observations of transient neutron output from the (3He,n) branch of D-D fusion. At low energy, D-D reactions favor the (T,p) branch. Fast product tritium may be captured by palladium isotopes to form excited-state Ag*, removing tritium from the system and preventing deuterium-tritium fusion. This may decay by alpha or proton emission, yielding fast ions and excited state Rh* or Pd*. Fast ion collisional “trapping” may occur at Fermi electron speeds, enhancing in situ upscattering and yielding increased D-D reaction rates. Analysis of the dynamics of these processes suggests conditions for exponential growth.