ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Antonio Soria, Vito Renda, Loris Papa, Franco Fenoglio
Fusion Science and Technology | Volume 16 | Number 4 | December 1989 | Pages 474-490
Technical Paper | Special Section: Cold Fusion Technical Notes / Safety/Environmental Aspect | doi.org/10.13182/FST89-A29110
Articles are hosted by Taylor and Francis Online.
Within the framework of safety analysis for the Next European Torus, a decay heat hazards assessment is under way at the Joint Research Centre at Ispra. Undercooling accidents [loss-of-coolant and loss-of-flow accidents (LOCAs and LOFAs)] due to pump failure have been investigated assuming an automatic plasma shutdown in both cases. The passive heat removal mechanisms considered include radiation between components and residual cooling by the thermosyphon effect in the main cooling circuits. Conservative thermohydraulic calculations have been made to determine coolant velocity and temperature transients to avoid water boiling in the circuits. Temperature transients in the whole reactor, coupling radiation and water cooling effects, have been assessed, taking into account the reciprocal influence of the different cooling circuits. Sensitivity studies have been performed to analyze some thermohydraulic parameters. Results show that during a LOFA, water boiling can be avoided provided that the water inertia is large enough, and material melting temperatures are not reached during a LOCA.